You're asking about a chemical compound with a rather long and specific name. This compound is a derivative of a chemical structure known as **quinoline**. Here's a breakdown of the name and why it might be important for research:
**1-[3-(4-morpholinyl)propyl]-1-[(7-oxo-3,6-dihydro-2H-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]-3-phenylurea**
Let's break down the name into its parts:
* **1-[3-(4-morpholinyl)propyl]**: This part indicates a specific chain attached to the main molecule. It contains a morpholine ring (a cyclic amine) connected to a propyl chain.
* **1-[(7-oxo-3,6-dihydro-2H-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]**: This is the core structure of the compound. It involves a quinoline ring system with modifications:
* **7-oxo**: This means there's a ketone group (C=O) at position 7 on the quinoline ring.
* **3,6-dihydro-2H-[1,4]dioxino[2,3-g]quinolin**: This describes a specific fusion of rings onto the quinoline core, involving a dioxane ring (containing two oxygen atoms).
* **(8-yl)methyl**: This indicates a methyl group (CH3) attached to the quinoline ring at position 8.
* **3-phenylurea**: This refers to a urea group (NH-CO-NH) connected to a phenyl ring (a benzene ring).
**Importance for Research:**
The specific structure and modifications to the quinoline ring in this compound make it a potential candidate for investigation in various research areas. Here's why it could be important:
* **Pharmacology:** Quinoline derivatives are known to possess a wide range of biological activities. They have been studied for their potential as:
* **Anti-cancer agents:** Quinoline derivatives can interfere with cell growth and proliferation, making them promising candidates for anticancer drug development.
* **Antibacterial agents:** Quinoline compounds have been shown to exhibit antimicrobial activity against certain bacteria.
* **Anti-inflammatory agents:** Some quinoline derivatives possess anti-inflammatory properties, potentially useful in treating inflammatory conditions.
* **Materials Science:** Quinoline derivatives can exhibit unique properties due to their structural features. They have been explored for applications in:
* **Organic electronics:** Some quinolines possess properties that make them suitable for use in organic light-emitting diodes (OLEDs) and other electronic devices.
* **Dye chemistry:** Quinoline derivatives can be fluorescent and have potential as dyes or fluorescent probes.
**To know the exact reason why this specific compound is being investigated, you would need to consult a research paper or database specifically mentioning it.**
The complexity of the compound suggests it might be a newly synthesized or modified molecule, potentially with improved properties or a specific biological target in mind.
ID Source | ID |
---|---|
PubMed CID | 646643 |
CHEMBL ID | 1455667 |
CHEBI ID | 112186 |
Synonym |
---|
1-(3-morpholin-4-yl-propyl)-1-(7-oxo-2,3,6,7-tetrahydro-[1,4]dioxino[2,3-g]quinolin-8-ylmethyl)-3-phenyl-urea |
ASN 05114013 |
MLS000073143 |
smr000004155 |
OPREA1_190368 |
MLS001385536 |
CHEBI:112186 |
1-(3-morpholin-4-ylpropyl)-1-[(7-oxo-3,6-dihydro-2h-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]-3-phenylurea |
AKOS000779213 |
HMS2154J03 |
HMS3312M15 |
CHEMBL1455667 |
Q27192288 |
1-[3-(4-morpholinyl)propyl]-1-[(7-oxo-3,6-dihydro-2h-[1,4]dioxino[2,3-g]quinolin-8-yl)methyl]-3-phenylurea |
Class | Description |
---|---|
quinolines | A class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 30.3001 | 0.0447 | 17.8581 | 100.0000 | AID485294; AID485341 |
Chain A, HADH2 protein | Homo sapiens (human) | Potency | 32.4648 | 0.0251 | 20.2376 | 39.8107 | AID886; AID893 |
Chain B, HADH2 protein | Homo sapiens (human) | Potency | 32.4648 | 0.0251 | 20.2376 | 39.8107 | AID886; AID893 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 25.1189 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 3.1623 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ClpP | Bacillus subtilis | Potency | 31.6228 | 1.9953 | 22.6730 | 39.8107 | AID651965 |
TDP1 protein | Homo sapiens (human) | Potency | 15.4594 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Smad3 | Homo sapiens (human) | Potency | 3.9811 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
alpha-galactosidase | Homo sapiens (human) | Potency | 35.4813 | 4.4668 | 18.3916 | 35.4813 | AID2107 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 31.6228 | 0.0018 | 15.6638 | 39.8107 | AID894 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 11.2202 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 50.1187 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |